ace是什么意思| 荨麻疹是什么原因| 手腕痛什么原因| 自身免疫性胃炎是什么意思| 眼睛充血用什么眼药水最好| 肾尿盐结晶是什么意思| burgundy是什么颜色| 口腔痛什么原因| 股骨头坏死是什么原因引起的| ace是什么| 有什么故事| 失眠吃什么药效果最好| 努尔哈赤是什么民族| ssg是什么意思| 5月有什么节日| 乙型肝炎表面抗体阳性是什么意思| 腹膜刺激征是指什么| 嫡传弟子是什么意思| 什么地躺着| 社会很单纯复杂的是人是什么歌| 印鉴是什么意思| 2000年为什么叫千禧年| 鱼香肉丝用什么肉| 眩晕症吃什么药最好| 早上不晨勃是什么原因| 梦见虱子是什么意思| 毛遂自荐是什么意思| 老年人适合吃什么| 敏感的反义词是什么| x片和ct有什么区别| 十月二十二什么星座| 老年人助听器什么牌子好| 荔枝是什么季节的水果| 鱼字五行属什么| 声音的高低叫什么| 嘴角烂是什么原因| 为什么会流鼻血什么原因引起的| 吃马齿苋有什么好处| 西梅不能和什么一起吃| 宫颈糜烂用什么药好| 内心os什么意思| 欺世盗名是什么意思| o型血可以接受什么血型| 月经来了吃什么好| 宫颈纳囊什么意思| 链球菌感染是什么病| 儿童风热感冒吃什么药| 格桑花是什么意思| 什么太阳| 马是什么牌子的车| 检查血糖挂什么科| 什么是荨麻疹| 谋生是什么意思| 男人断眉代表什么| 鱼不能和什么一起吃| 玻璃心是什么意思| 16岁可以做什么工作| 洋葱有什么功效与作用| 五液是指什么| 为什么会牙痛| 什么是甲状腺| 癔病是一种什么病| 今天是什么好日子| 宝宝肌张力高会有什么影响| crh是什么意思| 复合维生素b什么时候吃最好| 什么花是白色的| 溶肌症的症状是什么| 我的梦想是什么| 乳晕是什么| 海带与什么食物相克| 七月十八是什么日子| 再接再厉是什么意思| 园字五行属什么| 陈皮配什么喝去湿气| 园五行属什么| 史铁生为什么瘫痪| 什么是邮箱地址应该怎么填写| 掏耳朵咳嗽是什么原因| 什么是符号| 望子成龙是什么意思| 脖子粗大是什么病的症状| 尿路感染吃什么消炎药| 乙木代表什么| 胚包括什么| ct与核磁共振有什么区别| iga肾病是什么意思| 长痘吃什么水果好| 梧桐树长什么样子| 麦粒肿是什么| 棚改是什么意思| 狮子住在什么地方| 外向孤独症是什么意思| f代表什么| 神经梅毒有什么症状| 乙状结肠冗长是什么意思| 末是什么意思| 彩超无回声是什么意思| 扁桃体发炎有什么症状| 带量采购是什么意思| 山竹有什么好处| 胃溃疡吃什么水果| 脑供血不足吃什么药| microsd卡是什么卡| instagram什么意思| 取决于你是什么意思| 梦见两口子吵架是什么意思| 今年28岁属什么生肖| 胃疼喝什么能缓解疼痛| 手上起倒刺是缺什么| 元宵节的习俗是什么| 小三阳是什么意思| 未时属什么生肖| 爵是什么器皿| 梦到鸡是什么意思| 什么眼霜去皱效果好| 336是什么意思| 民考民是什么意思| 手蜕皮什么原因| 口气臭吃什么能改善| 嘴唇发白是什么原因引起的| 孩子肚子疼吃什么药| 眼睛有眼屎用什么眼药水| 仓鼠喝什么水| 胃难受是什么原因| 脑瘫是什么原因引起的| 吃什么食物最补血| 九月初五是什么星座| 天上的星星为什么会发光| 13年属什么生肖| 澳门车牌号是什么样子| 金针菇炒什么好吃| 什么是植物蛋白| 说什么好| 小腿经常抽筋是什么原因| 气血不足什么引起的| 淋巴结是什么病| 胸围98是什么罩杯| 56个民族都有什么族| 年字五行属什么| 加仓什么意思| 颈动脉彩超能查出什么| 腿上有青筋是什么原因| 腰间盘突出是什么原因引起的| 风云人物什么意思| 刘备的马叫什么名字| 糖醋里脊用什么淀粉| 红曲是什么| 0元购是什么意思| 特斯拉发明了什么| 顺风耳是什么意思| 属牛的守护神是什么菩萨| 惊天动地是什么生肖| 老三篇是什么意思| 虎鲸为什么对人类友好| 夏天喝什么好| 喝什么水最好| 牙龈发黑是什么原因| 樱桃不能和什么一起吃| 喝什么去火效果最好| 什么是记忆棉| 光动力治疗什么| 炖鸡汤放什么材料| 女人梦见掉牙齿是什么征兆| 六月下旬是什么时候| 医保统筹支付什么意思| wonderland是什么意思| 两毛四是什么军衔| 高玩是什么意思| 绿豆汤有什么功效| 歇夏是什么意思| 什么酒最贵| 嘴唇上起泡是什么原因| 身上遇热就痒是什么病| 日晡是什么意思| 猛吸气胸口疼什么原因| 刷屏是什么意思| 过誉是什么意思| 10月16是什么星座| 腰间盘突出压迫神经腿疼吃什么药| 一什么一笑| 晚上睡不着白天睡不醒是什么原因| 脑梗有什么前兆| 牛排炖什么好吃| 7岁属什么| 画饼什么意思| 心肌酶是检查什么的| 跳绳有什么好处| 大冒险问什么| 天空像什么| 空调送风模式有什么用| adh是什么激素| 舌苔白有齿痕吃什么药| 左卵巢囊性结构是什么意思| 什么什么本本| 左边小腹疼是什么原因| opple是什么牌子| 附骨疽是什么病| 万丈深渊是什么意思| 头层牛皮除牛反绒是什么意思| 积气是什么意思| 相安无事是什么意思| 尿酸高可以吃什么肉| 口臭要做什么检查| 什么是美尼尔氏综合症| 婴儿吃不饱有什么危害| 阳痿早泄吃什么药| 车厘子什么季节成熟| 子宫内膜粘连有什么症状| 爆栗什么意思| 肚子大腿细是什么原因| 过敏性皮炎用什么药| 黄山四绝指的是什么| 写字楼是干什么的| 清明有什么习俗| 病毒性感冒发烧吃什么药| 孕妇感冒可以吃什么药| 眉毛痒痒代表什么预兆| 南瓜子吃多了有什么副作用| 睡觉口干是什么原因| 肺部硬结灶是什么意思| 杨梅泡酒有什么功效和作用| 黄腔是什么意思| 大姨妈量多是什么原因| 香草是什么| 肛门下坠是什么原因| ppm是什么单位| 雄起是什么意思| 精神小伙是什么意思| 胃胀胃疼吃什么药| 抽烟什么感觉| 小腿浮肿吃什么药最好| 什么牌子的保温杯好| 西沙必利片治什么病| 窍门是什么意思| 呕吐出血是什么原因| 血小板偏高有什么危害| 工口是什么意思| 两败俱伤是什么意思| 老人家脚肿是什么原因引起的| 右耳朵痒是什么预兆| 快的反义词是什么| 为什么要吃叶酸| 风热感冒吃什么药最好| 失落感是什么意思| 空调买什么品牌的好| 什么是认知行为疗法| 救济的近义词是什么| jj是什么意思| 信女是什么意思| 头眩晕是什么原因引起的| 什么扑鼻成语| 钾血症是什么病| 不置可否是什么意思| 巽是什么意思| 梦到自己孩子死了是什么征兆| 健身有什么好处| 肾衰竭是什么意思| 御木本是什么档次| 回复1是什么意思| 走四方是什么生肖| 枭神夺食会发生什么| 大姑姐是什么意思| 40gp是什么意思| 百度
百度 形成了美国对中贸易逆差。

In mathematics, the linear span (also called the linear hull[1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains It is the set of all finite linear combinations of the elements of S,[2] and the intersection of all linear subspaces that contain It is often denoted span(S)[3] or

The cross-hatched plane is the linear span of u and v in both R2 and R3, here shown in perspective.

For example, in geometry, two linearly independent vectors span a plane.

To express that a vector space V is a linear span of a subset S, one commonly uses one of the following phrases: S spans V; S is a spanning set of V; V is spanned or generated by S; S is a generator set or a generating set of V.

Spans can be generalized to many mathematical structures, in which case, the smallest substructure containing is generally called the substructure generated by

Definition

edit

Given a vector space V over a field K, the span of a set S of vectors (not necessarily finite) is defined to be the intersection W of all subspaces of V that contain S. It is thus the smallest (for set inclusion) subspace containing S. It is referred to as the subspace spanned by S, or by the vectors in S. Conversely, S is called a spanning set of W, and we say that S spans W.

It follows from this definition that the span of S is the set of all finite linear combinations of elements (vectors) of S, and can be defined as such.[4][5][6] That is,  

When S is empty, the only possibility is n = 0, and the previous expression for   reduces to the empty sum.[a] The standard convention for the empty sum implies thus   a property that is immediate with the other definitions. However, many introductory textbooks simply include this fact as part of the definition.

When   is finite, one has  

Examples

edit

The real vector space   has {(?1, 0, 0), (0, 1, 0), (0, 0, 1)} as a spanning set. This particular spanning set is also a basis. If (?1, 0, 0) were replaced by (1, 0, 0), it would also form the canonical basis of  .

Another spanning set for the same space is given by {(1, 2, 3), (0, 1, 2), (?1, 1?2, 3), (1, 1, 1)}, but this set is not a basis, because it is linearly dependent.

The set {(1, 0, 0), (0, 1, 0), (1, 1, 0)} is not a spanning set of  , since its span is the space of all vectors in   whose last component is zero. That space is also spanned by the set {(1, 0, 0), (0, 1, 0)}, as (1, 1, 0) is a linear combination of (1, 0, 0) and (0, 1, 0). Thus, the spanned space is not   It can be identified with   by removing the third components equal to zero.

The empty set is a spanning set of {(0, 0, 0)}, since the empty set is a subset of all possible vector spaces in  , and {(0, 0, 0)} is the intersection of all of these vector spaces.

The set of monomials xn, where n is a non-negative integer, spans the space of polynomials.

Theorems

edit

Equivalence of definitions

edit

The set of all linear combinations of a subset S of V, a vector space over K, is the smallest linear subspace of V containing S.

Proof. We first prove that span S is a subspace of V. Since S is a subset of V, we only need to prove the existence of a zero vector 0 in span S, that span S is closed under addition, and that span S is closed under scalar multiplication. Letting  , it is trivial that the zero vector of V exists in span S, since  . Adding together two linear combinations of S also produces a linear combination of S:  , where all  , and multiplying a linear combination of S by a scalar   will produce another linear combination of S:  . Thus span S is a subspace of V.
It follows that  , since every vi is a linear combination of S (trivially). Suppose that W is a linear subspace of V containing S. Since W is closed under addition and scalar multiplication, then every linear combination   must be contained in W. Thus, span S is contained in every subspace of V containing S, and the intersection of all such subspaces, or the smallest such subspace, is equal to the set of all linear combinations of S.

Size of spanning set is at least size of linearly independent set

edit

Every spanning set S of a vector space V must contain at least as many elements as any linearly independent set of vectors from V.

Proof. Let   be a spanning set and   be a linearly independent set of vectors from V. We want to show that  .
Since S spans V, then   must also span V, and   must be a linear combination of S. Thus   is linearly dependent, and we can remove one vector from S that is a linear combination of the other elements. This vector cannot be any of the wi, since W is linearly independent. The resulting set is  , which is a spanning set of V. We repeat this step n times, where the resulting set after the pth step is the union of   and m - p vectors of S.
It is ensured until the nth step that there will always be some vi to remove out of S for every adjoint of v, and thus there are at least as many vi's as there are wi's—i.e.  . To verify this, we assume by way of contradiction that  . Then, at the mth step, we have the set   and we can adjoin another vector  . But, since   is a spanning set of V,   is a linear combination of  . This is a contradiction, since W is linearly independent.

Spanning set can be reduced to a basis

edit

Let V be a finite-dimensional vector space. Any set of vectors that spans V can be reduced to a basis for V, by discarding vectors if necessary (i.e. if there are linearly dependent vectors in the set). If the axiom of choice holds, this is true without the assumption that V has finite dimension. This also indicates that a basis is a minimal spanning set when V is finite-dimensional.

Generalizations

edit

Generalizing the definition of the span of points in space, a subset X of the ground set of a matroid is called a spanning set if the rank of X equals the rank of the entire ground set[7]

The vector space definition can also be generalized to modules.[8][9] Given an R-module A and a collection of elements a1, ..., an of A, the submodule of A spanned by a1, ..., an is the sum of cyclic modules   consisting of all R-linear combinations of the elements ai. As with the case of vector spaces, the submodule of A spanned by any subset of A is the intersection of all submodules containing that subset.

Closed linear span (functional analysis)

edit

In functional analysis, a closed linear span of a set of vectors is the minimal closed set which contains the linear span of that set.

Suppose that X is a normed vector space and let E be any non-empty subset of X. The closed linear span of E, denoted by   or  , is the intersection of all the closed linear subspaces of X which contain E.

One mathematical formulation of this is

 

The closed linear span of the set of functions xn on the interval [0, 1], where n is a non-negative integer, depends on the norm used. If the L2 norm is used, then the closed linear span is the Hilbert space of square-integrable functions on the interval. But if the maximum norm is used, the closed linear span will be the space of continuous functions on the interval. In either case, the closed linear span contains functions that are not polynomials, and so are not in the linear span itself. However, the cardinality of the set of functions in the closed linear span is the cardinality of the continuum, which is the same cardinality as for the set of polynomials.

Notes

edit

The linear span of a set is dense in the closed linear span. Moreover, as stated in the lemma below, the closed linear span is indeed the closure of the linear span.

Closed linear spans are important when dealing with closed linear subspaces (which are themselves highly important, see Riesz's lemma).

A useful lemma

edit

Let X be a normed space and let E be any non-empty subset of X. Then

  1.   is a closed linear subspace of X which contains E,
  2.  , viz.   is the closure of  ,
  3.  
  4.  

(So the usual way to find the closed linear span is to find the linear span first, and then the closure of that linear span.)

See also

edit

Footnotes

edit
  1. ^ This is logically valid as when n = 0, the conditions for the vectors and constants are empty, and therefore vacuously satisfied.

Citations

edit
  1. ^ Encyclopedia of Mathematics (2020). Linear Hull.
  2. ^ Axler (2015) p. 29, § 2.7
  3. ^ Axler (2015) pp. 29-30, §§ 2.5, 2.8
  4. ^ Hefferon (2020) p. 100, ch. 2, Definition 2.13
  5. ^ Axler (2015) pp. 29-30, §§ 2.5, 2.8
  6. ^ Roman (2005) pp. 41-42
  7. ^ Oxley (2011), p. 28.
  8. ^ Roman (2005) p. 96, ch. 4
  9. ^ Mac Lane & Birkhoff (1999) p. 193, ch. 6

Sources

edit

Textbooks

edit
  • Axler, Sheldon Jay (2015). Linear Algebra Done Right (PDF) (3rd ed.). Springer. ISBN 978-3-319-11079-0.
  • Hefferon, Jim (2020). Linear Algebra (PDF) (4th ed.). Orthogonal Publishing. ISBN 978-1-944325-11-4.
  • Mac Lane, Saunders; Birkhoff, Garrett (1999) [1988]. Algebra (3rd ed.). AMS Chelsea Publishing. ISBN 978-0821816462.
  • Oxley, James G. (2011). Matroid Theory. Oxford Graduate Texts in Mathematics. Vol. 3 (2nd ed.). Oxford University Press. ISBN 9780199202508.
  • Roman, Steven (2005). Advanced Linear Algebra (PDF) (2nd ed.). Springer. ISBN 0-387-24766-1.
  • Rynne, Brian P.; Youngson, Martin A. (2008). Linear Functional Analysis. Springer. ISBN 978-1848000049.
  • Lay, David C. (2021) Linear Algebra and Its Applications (6th Edition). Pearson.
edit
七月七日是什么节日 肝脏低密度影是什么意思 上帝叫什么名字 地藏菩萨的坐骑是什么 hav是什么病毒
枸杞有什么作用和功效 雾化后为什么要漱口 不领情是什么意思 为伊消得人憔悴什么意思 户口分户需要什么条件
乙肝复查检查什么项目 含羞草长什么样 种生基是什么意思 偏头疼吃什么药效果好 TPS什么意思
西洋参吃多了有什么副作用 内什么外什么 晚上饿了吃什么不长胖 筠字五行属什么 肚子突然变大是什么原因
滞纳金是什么hcv9jop2ns3r.cn 一级医院是什么意思hcv8jop0ns7r.cn 印堂发红是什么的征兆bjhyzcsm.com 重度抑郁症吃什么药hcv8jop8ns2r.cn 打嗝不停是什么病前兆hcv9jop7ns0r.cn
白细胞低是什么意思hcv8jop4ns2r.cn 眼睛浮肿是什么原因引起的xianpinbao.com 急性肠胃炎吃什么药效果好hcv9jop0ns7r.cn 铁杵是什么hcv9jop2ns8r.cn 多囊什么意思shenchushe.com
睡觉打嗝是什么原因shenchushe.com 身份证号最后一位代表什么hcv8jop0ns6r.cn 什么是果糖hcv8jop8ns8r.cn 舌苔发黄是什么病hcv7jop5ns2r.cn 什么虫子咬了像针扎一样疼hcv8jop1ns3r.cn
缺钾吃什么补得最快hcv7jop7ns1r.cn 鹅口疮用什么药效果好gangsutong.com 心绞痛吃什么药缓解最快hcv8jop8ns1r.cn 晕是什么意思hcv8jop9ns5r.cn 遥祝是什么意思hcv9jop5ns0r.cn
百度