梦见玫瑰花是什么预兆| 一个月来两次月经是什么原因| 什么都值得买| 受害者是什么意思| 牛建读什么| 30年属什么生肖| 制片人是什么意思| 牙齿发黄是什么原因| 嗔恨心是什么意思| 婚前体检都检查什么| 开心果为什么叫开心果| 脾虚什么症状| 脂浊是什么意思| 大姨妈没来是什么原因| 小孩血糖高是什么原因引起的| 右侧卵巢多囊样改变是什么意思| 气川读什么| 五阴是什么| 前列腺增生吃什么药最好| 五脏六腑是什么意思| 一个不一个好念什么| 眼球出血是什么原因引起的| 眼皮重是什么原因| 09年属什么生肖| 草字头的字有什么| 五大发展理念是什么| 男孩学什么技术最好| 身上起红点是什么病| 蟑螂最喜欢吃什么| 本科一批和本科二批有什么区别| 力是什么| 儿童热感冒吃什么药| 早餐吃什么减肥| 人参果吃了有什么好处| 属羊的什么命| 荡漾是什么意思| 什么是心脑血管疾病| 心尖尖是什么意思| 舒张压低是什么原因| 护理部主任是什么级别| 左手中指戴戒指什么意思| 靠谱是什么意思| 春雨绵绵是什么生肖| 盎司是什么单位| 跛行是什么意思| 曲解什么意思| 小名是什么意思| 金灿灿的什么| aoa是什么意思| 野什么意思| 率性是什么意思| 1997年7月1日属什么生肖| 手胀是什么原因| 胚胎生化是什么意思| 什么吃蟑螂| 毛遂自荐什么意思| 低聚异麦芽糖是什么| 孕酮低什么原因| 义眼是什么| 巴黎世家是什么档次| 指手画脚是什么意思| 慢性非萎缩性胃炎什么意思| 健康管理是做什么的| 什么是疖肿| 阳光是什么颜色| 经常干咳嗽是什么原因| 凝神是什么意思| 风湿病是什么原因造成的| 碧字五行属什么| 2020年是什么生肖| 考警校需要什么条件| 水痘是什么病毒| b2b是什么| dha孕妇什么时候吃| 小仓鼠吃什么| 虾皮是什么虾| 缺二氧化碳是什么症状| 不安腿是什么症状| 大力丸是什么药| 大脑记忆力下降是什么原因| 喝苦荞茶对身体有什么好处| 为什么今年有两个六月| 面粉是什么做的| 凤凰单丛茶属于什么茶| 吹风样杂音见于什么病| 什么是腺癌| 免疫球蛋白低说明什么| 什么鱼吃玉米| 脂肪肝能吃什么水果| 命根子是什么生肖| BORDEAUX是什么红酒| 胰腺炎恢复期吃什么好| 六点是什么时辰| 一只眼睛肿了是什么原因| 为什么健身后体重反而重了| 穆斯林是什么| 打完狂犬疫苗不能吃什么| 什么是中国| 尿胆红素阳性是什么意思| 北京市副市长什么级别| 女人胯骨疼是什么原因| 霏是什么意思| 抽象思维是什么意思| 十月二十二什么星座| 心电图电轴右偏是什么意思| 嗓子干疼是什么原因| 新疆人是什么民族| 凯旋归来是什么意思| 消肿吃什么食物好| 血小板升高是什么原因| 孩子睡觉磨牙是什么原因| 抽血能检查出什么| 煎中药用什么锅| 血管瘤长什么样子图片| 发热吃什么药| sancanal是什么牌子| 尘埃落定什么意思| 荒诞是什么意思| 奥肯能胶囊是什么药| 什么是气溶胶| 罗布麻是什么东西| 旅行是什么意思| 美版苹果和国行有什么区别| 同房是什么| 晚上8点到9点是什么时辰| 被迫是什么意思| 学考成绩什么时候公布| 耳结是什么原因造成的| bp在医学上是什么意思| 盆腔炎吃什么药效果好| 协警是干什么的| 天空又什么又什么| 漫游是什么| 大牙什么时候换| 祀是什么意思| 以纯属于什么档次| 口若悬河是指什么生肖| 什么茶是绿茶| 前列腺液是什么东西| 摇摇欲坠是什么意思| 阴茎硬度不够吃什么药| 为什么总是头疼| 左耳耳鸣是什么原因| 牛角尖是什么意思| 孩子记忆力差吃什么好| 月牙是什么| 下眼皮跳动是什么原因| 30如狼40如虎是什么意思| 慢性胃炎吃什么中成药| 白色虫子是什么虫图片| 举人相当于什么官| 酒不能和什么一起吃| 珍珠鸟吃什么食物| 酒糟鼻买什么药膏去红| 收阴是什么意思| 粘纤是什么材料| 农历七月二十什么日子| 什么病会引起背部疼痛| 什么是钓鱼执法| 铁是补什么的| 舌苔很白是什么原因| 为什么叫白俄罗斯| 免冠照片是什么意思| 术语是什么意思| 尿蛋白高不能吃什么食物| 前是什么偏旁| 毛肚是什么动物身上的| 错综复杂是什么意思| 薄凉是什么意思| 梦见狼狗是什么预兆| 吃什么能补气血| 手指甲空了是什么原因| 什么是密度| 肾病可以吃什么水果| 去美容院洗脸有什么好处| 三月什么星座| 蛤蟆吃什么| 三点水的字和什么有关| 眼睛白色部分叫什么| 牛奶丝是什么面料| 高考600多分能上什么大学| ptsd是什么病| 猫咪拉肚子吃什么药| 口腔医学和口腔医学技术有什么区别| miu是什么意思| 埋伏牙是什么意思| 栀子对妇科有什么功效| 论是什么意思| gh是什么激素| 东北有什么好玩的景点| 气加山念什么| 气场强大是什么意思| 验孕棒什么时候用| 血管瘤挂什么科比较好| 市组织部长是什么级别| 腰酸痛挂什么科| 氤氲是什么意思| 湖蓝色配什么颜色好看| 牙疼吃什么食物| 胆结石吃什么比较好| 百香果有什么功效与作用| 五味子有什么功效和作用| 三月十七是什么星座| 甘油脂肪酸酯是什么| 黑色的裤子配什么颜色的上衣| 四大发明是什么| 热闹非凡是什么意思| 什么东西可以解酒| 上午十点多是什么时辰| 要什么| 胆囊结石有什么影响| 变卖是什么意思| 巴基斯坦讲什么语言| 肾结石检查什么项目| 肌酸激酶高是什么原因| otc是什么| 十一月六号是什么星座| 日光性皮炎用什么药膏| 小猫能吃什么水果| 体毛旺盛是什么原因| 相知相惜是什么意思| 空调为什么要加氟| 什么叫牙周炎| 宠幸是什么意思| 龋齿是什么样子的图片| 吃什么对心脏最好| 什么蔬菜不能放冰箱| 肚子疼是什么原因一阵一阵的| 自贸区是什么意思| 本我是什么意思| 羊水污染是什么原因造成的| 什么是豆粕| 眼睛胀是什么原因| 白皮书什么意思| 张飞为什么不救关羽| 巧克力和什么不能一起吃| 铁塔公司是干什么的| 神经衰弱吃什么药好| 吃炒黑豆有什么好处和坏处| 六月十五号是什么星座| 什么木做菜板最好| 双侧卵巢多卵泡是什么意思| 十月十日什么星座| 三下乡是什么| 老汉推车是什么姿势| 百合是什么颜色| 电疗是什么| 五花肉炒什么配菜好吃| 混子是什么意思| 腮边长痘是什么原因| 80年五行属什么| 差强人意是什么意思| 1120是什么星座| 膝盖酸痛什么原因| 葛根和什么搭配泡水好| 什么样的教诲| 上海有什么好玩的| 一什么玉米| 李逵属什么生肖| 蜈蚣最怕什么东西| 四月初八是什么星座| 五月份什么星座| hr医学上是什么意思| 海绵体修复吃什么药| 百度

湖北农村垃圾治理考评成绩出炉 武汉仙桃荆门位列前三

百度 “今年除夕夜,既没吃到饺子也没有吃到藏餐,叫个外卖就凑合过年了。

In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R,[1] or a module of finite type.

Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.

A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group.

Definition

edit

The left R-module M is finitely generated if there exist a1, a2, ..., an in M such that for any x in M, there exist r1, r2, ..., rn in R with x = r1a1 + r2a2 + ... + rnan.

The set {a1, a2, ..., an} is referred to as a generating set of M in this case. A finite generating set need not be a basis, since it need not be linearly independent over R. What is true is: M is finitely generated if and only if there is a surjective R-linear map:

 

for some n; in other words, M is a quotient of a free module of finite rank.

If a set S generates a module that is finitely generated, then there is a finite generating set that is included in S, since only finitely many elements in S are needed to express the generators in any finite generating set, and these finitely many elements form a generating set. However, it may occur that S does not contain any finite generating set of minimal cardinality. For example the set of the prime numbers is a generating set of   viewed as  -module, and a generating set formed from prime numbers has at least two elements, while the singleton{1} is also a generating set.

In the case where the module M is a vector space over a field R, and the generating set is linearly independent, n is well-defined and is referred to as the dimension of M (well-defined means that any linearly independent generating set has n elements: this is the dimension theorem for vector spaces).

Any module is the union of the directed set of its finitely generated submodules.

A module M is finitely generated if and only if any increasing chain Mi of submodules with union M stabilizes: i.e., there is some i such that Mi = M. This fact with Zorn's lemma implies that every nonzero finitely generated module admits maximal submodules. If any increasing chain of submodules stabilizes (i.e., any submodule is finitely generated), then the module M is called a Noetherian module.

Examples

edit
  • If a module is generated by one element, it is called a cyclic module.
  • Let R be an integral domain with K its field of fractions. Then every finitely generated R-submodule I of K is a fractional ideal: that is, there is some nonzero r in R such that rI is contained in R. Indeed, one can take r to be the product of the denominators of the generators of I. If R is Noetherian, then every fractional ideal arises in this way.
  • Finitely generated modules over the ring of integers Z coincide with the finitely generated abelian groups. These are completely classified by the structure theorem, taking Z as the principal ideal domain.
  • Finitely generated (say left) modules over a division ring are precisely finite dimensional vector spaces (over the division ring).

Some facts

edit

Every homomorphic image of a finitely generated module is finitely generated. In general, submodules of finitely generated modules need not be finitely generated. As an example, consider the ring R = Z[X1, X2, ...] of all polynomials in countably many variables. R itself is a finitely generated R-module (with {1} as generating set). Consider the submodule K consisting of all those polynomials with zero constant term. Since every polynomial contains only finitely many terms whose coefficients are non-zero, the R-module K is not finitely generated.

In general, a module is said to be Noetherian if every submodule is finitely generated. A finitely generated module over a Noetherian ring is a Noetherian module (and indeed this property characterizes Noetherian rings): A module over a Noetherian ring is finitely generated if and only if it is a Noetherian module. This resembles, but is not exactly Hilbert's basis theorem, which states that the polynomial ring R[X] over a Noetherian ring R is Noetherian. Both facts imply that a finitely generated commutative algebra over a Noetherian ring is again a Noetherian ring.

More generally, an algebra (e.g., ring) that is a finitely generated module is a finitely generated algebra. Conversely, if a finitely generated algebra is integral (over the coefficient ring), then it is finitely generated module. (See integral element for more.)

Let 0 → M′ → MM′′ → 0 be an exact sequence of modules. Then M is finitely generated if M′, M′′ are finitely generated. There are some partial converses to this. If M is finitely generated and M′′ is finitely presented (which is stronger than finitely generated; see below), then M′ is finitely generated. Also, M is Noetherian (resp. Artinian) if and only if M′, M′′ are Noetherian (resp. Artinian).

Let B be a ring and A its subring such that B is a faithfully flat right A-module. Then a left A-module F is finitely generated (resp. finitely presented) if and only if the B-module B ?A F is finitely generated (resp. finitely presented).[2]

Finitely generated modules over a commutative ring

edit

For finitely generated modules over a commutative ring R, Nakayama's lemma is fundamental. Sometimes, the lemma allows one to prove finite dimensional vector spaces phenomena for finitely generated modules. For example, if f : MM is a surjective R-endomorphism of a finitely generated module M, then f is also injective, and hence is an automorphism of M.[3] This says simply that M is a Hopfian module. Similarly, an Artinian module M is coHopfian: any injective endomorphism f is also a surjective endomorphism.[4] The Forster–Swan theorem gives an upper bound for the minimal number of generators of a finitely generated module M over a commutative Noetherian ring.

Any R-module is an inductive limit of finitely generated R-submodules. This is useful for weakening an assumption to the finite case (e.g., the characterization of flatness with the Tor functor).

An example of a link between finite generation and integral elements can be found in commutative algebras. To say that a commutative algebra A is a finitely generated ring over R means that there exists a set of elements G = {x1, ..., xn} of A such that the smallest subring of A containing G and R is A itself. Because the ring product may be used to combine elements, more than just R-linear combinations of elements of G are generated. For example, a polynomial ring R[x] is finitely generated by {1, x} as a ring, but not as a module. If A is a commutative algebra (with unity) over R, then the following two statements are equivalent:[5]

  • A is a finitely generated R module.
  • A is both a finitely generated ring over R and an integral extension of R.

Generic rank

edit

Let M be a finitely generated module over an integral domain A with the field of fractions K. Then the dimension   is called the generic rank of M over A. This number is the same as the number of maximal A-linearly independent vectors in M or equivalently the rank of a maximal free submodule of M (cf. Rank of an abelian group). Since  ,   is a torsion module. When A is Noetherian, by generic freeness, there is an element f (depending on M) such that   is a free  -module. Then the rank of this free module is the generic rank of M.

Now suppose the integral domain A is an  -graded algebra over a field k generated by finitely many homogeneous elements of degrees  . Suppose M is graded as well and let   be the Poincaré series of M. By the Hilbert–Serre theorem, there is a polynomial F such that  . Then   is the generic rank of M.[6]

A finitely generated module over a principal ideal domain is torsion-free if and only if it is free. This is a consequence of the structure theorem for finitely generated modules over a principal ideal domain, the basic form of which says a finitely generated module over a PID is a direct sum of a torsion module and a free module. But it can also be shown directly as follows: let M be a torsion-free finitely generated module over a PID A and F a maximal free submodule. Let f be in A such that  . Then   is free since it is a submodule of a free module and A is a PID. But now   is an isomorphism since M is torsion-free.

By the same argument as above, a finitely generated module over a Dedekind domain A (or more generally a semi-hereditary ring) is torsion-free if and only if it is projective; consequently, a finitely generated module over A is a direct sum of a torsion module and a projective module. A finitely generated projective module over a Noetherian integral domain has constant rank and so the generic rank of a finitely generated module over A is the rank of its projective part.

Equivalent definitions and finitely cogenerated modules

edit

The following conditions are equivalent to M being finitely generated (f.g.):

  • For any family of submodules {Ni | iI} in M, if  , then   for some finite subset F of I.
  • For any chain of submodules {Ni | iI} in M, if  , then Ni = M for some i in I.
  • If   is an epimorphism, then the restriction   is an epimorphism for some finite subset F of I.

From these conditions it is easy to see that being finitely generated is a property preserved by Morita equivalence. The conditions are also convenient to define a dual notion of a finitely cogenerated module M. The following conditions are equivalent to a module being finitely cogenerated (f.cog.):

  • For any family of submodules {Ni | iI} in M, if  , then   for some finite subset F of I.
  • For any chain of submodules {Ni | iI} in M, if  , then Ni = {0} for some i in I.
  • If   is a monomorphism, where each   is an R module, then   is a monomorphism for some finite subset F of I.

Both f.g. modules and f.cog. modules have interesting relationships to Noetherian and Artinian modules, and the Jacobson radical J(M) and socle soc(M) of a module. The following facts illustrate the duality between the two conditions. For a module M:

  • M is Noetherian if and only if every submodule N of M is f.g.
  • M is Artinian if and only if every quotient module M/N is f.cog.
  • M is f.g. if and only if J(M) is a superfluous submodule of M, and M/J(M) is f.g.
  • M is f.cog. if and only if soc(M) is an essential submodule of M, and soc(M) is f.g.
  • If M is a semisimple module (such as soc(N) for any module N), it is f.g. if and only if f.cog.
  • If M is f.g. and nonzero, then M has a maximal submodule and any quotient module M/N is f.g.
  • If M is f.cog. and nonzero, then M has a minimal submodule, and any submodule N of M is f.cog.
  • If N and M/N are f.g. then so is M. The same is true if "f.g." is replaced with "f.cog."

Finitely cogenerated modules must have finite uniform dimension. This is easily seen by applying the characterization using the finitely generated essential socle. Somewhat asymmetrically, finitely generated modules do not necessarily have finite uniform dimension. For example, an infinite direct product of nonzero rings is a finitely generated (cyclic!) module over itself, however it clearly contains an infinite direct sum of nonzero submodules. Finitely generated modules do not necessarily have finite co-uniform dimension either: any ring R with unity such that R/J(R) is not a semisimple ring is a counterexample.

Finitely presented, finitely related, and coherent modules

edit

Another formulation is this: a finitely generated module M is one for which there is an epimorphism mapping Rk onto M :

f : RkM.

Suppose now there is an epimorphism,

φ : FM.

for a module M and free module F.

  • If the kernel of φ is finitely generated, then M is called a finitely related module. Since M is isomorphic to F/ker(φ), this basically expresses that M is obtained by taking a free module and introducing finitely many relations within F (the generators of ker(φ)).
  • If the kernel of φ is finitely generated and F has finite rank (i.e. F = Rk), then M is said to be a finitely presented module. Here, M is specified using finitely many generators (the images of the k generators of F = Rk) and finitely many relations (the generators of ker(φ)). See also: free presentation. Finitely presented modules can be characterized by an abstract property within the category of R-modules: they are precisely the compact objects in this category.
  • A coherent module M is a finitely generated module whose finitely generated submodules are finitely presented.

Over any ring R, coherent modules are finitely presented, and finitely presented modules are both finitely generated and finitely related. For a Noetherian ring R, finitely generated, finitely presented, and coherent are equivalent conditions on a module.

Some crossover occurs for projective or flat modules. A finitely generated projective module is finitely presented, and a finitely related flat module is projective.

It is true also that the following conditions are equivalent for a ring R:

  1. R is a right coherent ring.
  2. The module RR is a coherent module.
  3. Every finitely presented right R module is coherent.

Although coherence seems like a more cumbersome condition than finitely generated or finitely presented, it is nicer than them since the category of coherent modules is an abelian category, while, in general, neither finitely generated nor finitely presented modules form an abelian category.

See also

edit

References

edit
  1. ^ For example, Matsumura uses this terminology.
  2. ^ Bourbaki 1998, Ch 1, §3, no. 6, Proposition 11.
  3. ^ Matsumura 1989, Theorem 2.4.
  4. ^ Atiyah & Macdonald 1969, Exercise 6.1.
  5. ^ Kaplansky 1970, p. 11, Theorem 17.
  6. ^ Springer 1977, Theorem 2.5.6.

Textbooks

edit
  • Atiyah, M. F.; Macdonald, I. G. (1969), Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., pp. ix+128, MR 0242802
  • Bourbaki, Nicolas (1998), Commutative algebra. Chapters 1--7 Translated from the French. Reprint of the 1989 English translation, Elements of Mathematics, Berlin: Springer-Verlag, ISBN 3-540-64239-0
  • Kaplansky, Irving (1970), Commutative rings, Boston, Mass.: Allyn and Bacon Inc., pp. x+180, MR 0254021
  • Lam, T. Y. (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Springer-Verlag, ISBN 978-0-387-98428-5
  • Lang, Serge (1997), Algebra (3rd ed.), Addison-Wesley, ISBN 978-0-201-55540-0
  • Matsumura, Hideyuki (1989), Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Translated from the Japanese by M. Reid (2 ed.), Cambridge: Cambridge University Press, pp. xiv+320, ISBN 0-521-36764-6, MR 1011461
  • Springer, Tonny A. (1977), Invariant theory, Lecture Notes in Mathematics, vol. 585, Springer, doi:10.1007/BFb0095644, ISBN 978-3-540-08242-2.
脾胃阴虚吃什么中成药 大便拉不出来是什么原因 三长两短是什么意思 八月有什么节日 子宫腺肌症有什么症状
lch是什么意思 lancome是什么牌子的 1.22是什么星座 沙棘原浆有什么功效 梦见猪下崽预兆什么
经期血块多是什么原因 梦见袜子破了是什么意思 做病理是什么意思 吃完羊肉不能吃什么水果 梦见找鞋子是什么意思
结石有什么症状 吃什么睡眠最快 窒息什么意思 ko是什么意思啊 嗓子干疼是什么原因
脚气用什么洗脚hcv8jop0ns5r.cn 中药七情指的是什么bfb118.com 尚清是什么意思hcv8jop7ns8r.cn 梦见自己数钱什么预兆hcv9jop0ns6r.cn 上海话小赤佬是什么意思hcv8jop2ns7r.cn
舒张压偏高是什么原因hcv7jop6ns9r.cn 靠山是什么意思hcv9jop6ns3r.cn 公众号是什么意思bysq.com 沈阳是什么省hcv8jop2ns4r.cn 为什么叫a股hcv9jop1ns3r.cn
dl是什么意思hcv9jop5ns0r.cn 7.14什么情人节helloaicloud.com 缺钙吃什么补得最快hcv9jop4ns6r.cn 睡觉吐气是什么原因hcv8jop7ns7r.cn 放疗起什么作用hcv9jop7ns1r.cn
中午喜鹊叫有什么预兆hcv8jop2ns3r.cn 吃了桃子不能吃什么hcv8jop4ns3r.cn 休渔期是什么时候chuanglingweilai.com 面部神经痉挛吃什么药hcv7jop5ns2r.cn 苯佐卡因是什么hcv9jop5ns3r.cn
百度